
Feature Model Synthesis

with Genetic Programming

Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed

Software Systems Engineering
Johannes Kepler University

Linz, Austria
lukas.linsbauer@jku.at, roberto.lopez@jku.at, alexander.egyed@jku.at

http://www.jku.at/isse

Abstract. Search-Based Software Engineering (SBSE) has proven suc-
cessful on several stages of the software development life cycle. It has also
been applied to different challenges in the context of Software Product
Lines (SPLs) like generating minimal test suites. When reverse engi-
neering SPLs from legacy software an important challenge is the reverse
engineering of variability, often expressed in the form of Feature Mod-
els (FMs). The synthesis of FMs has been studied with techniques such
as Genetic Algorithms. In this paper we explore the use of Genetic Pro-
gramming for this task. We sketch our general workflow, the GP pipeline
employed, and its evolutionary operators. We report our experience in
synthesizing feature models from sets of feature combinations for 17 rep-
resentative feature models, and analyze the results using standard infor-
mation retrieval metrics.

Keywords: Feature, Feature Models, Feature Set, Reverse Engineering,
Software Product Lines, Variability Modeling.

1 Introduction

Search-Based Software Engineering (SBSE) is an emerging research area that
focuses on the application of search-based optimization techniques to problems
in software engineering [1]. Examples of these techniques are hill-climbing, sim-
ulated annealing, genetic algorithms, or swarm optimization [2]. SBSE has been
applied at several stages of the software development life cycle, but most promi-
nently for software testing [3].

Genetic Programming (GP) is a form of evolutionary computation that em-
ploys a tree-based representation of computer programs whose fitness is deter-
mined on how well the encoded programs solve a computational problem [4].
However, it is also used to solve mathematical problems like symbolic regression
where the goal is to find a formula that best explains a set of sample points.

Software Product Lines (SPLs) are families of related software systems where
each product has a different combination of features [5]. Most of the industrial
applications of SPLs start from a set of system variants, each providing a different

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 153–167, 2014.
c© Springer International Publishing Switzerland 2014

http://www.jku.at/isse

154 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

set of feature combinations, that must be reverse engineered into a SPL [6]. A
crucial step in this reverse engineering effort is obtaining a feature model [7] –
the de facto standard to represent the valid feature combinations – that denotes
all the desired feature combinations. Similarly to the use of GP for symbolic
regression, we use GP to find a feature model that best explains a set of product
variants.

Feature models are important to model the variability of software systems.
They describe which features can be combined and which ones cannot in order
to form products. However, often such information is not available, for example
when companies maintain portfolios of legacy software product variants that are
the result of ad hoc methods like clone and own, where a new product variant is
created by copying an existing variant and adapting it to fit another customer’s
requirements, or by making existing variants highly configurable [8]. Only once
the number of variants or possible configurations has become unmanagable com-
panies decide to reverse engineer an SPL from their existing product variants [9].
The first step to this is often the reverse engineering of a feature model. She et
al. provide two algorithms to solve this problem, a task that has been shown to
be NP-hard [10].

A recent publication by Harman et al. summarizes the developments in the
application of genetic programming and genetic improvement for reverse engi-
neering tasks and proposes new research directions where both SBSE techniques
could be employed [11]. Among these directions is SPLs for which the authors
sketch some potential research venues. In this paper we make, to the best of our
knowledge, the first application of genetic programming in the realm of SPLs.
We extend our previous work [12] where we employed a genetic algorithm for
reverse engineering feature models. We show that genetic programming provides
a more accurate representation of the feature models which, provided with more
specialized operators, can produce better reverse engineering results.

2 Feature Models and Running Example

Feature models have become the de facto standard for modelling the feature
combinations for SPLs [7]. They depict features and their relationships collec-
tively forming a tree-like structure. The nodes of the tree are the features denoted
as labelled boxes, and the edges represent the relationships among them. Fig-
ure 1 shows the feature model of our running example, the Graph Product Line
(GPL) [13], a standard SPL that has been extensively used as a case study. In
GPL, a product is a collection of algorithms applied to directed or undirected
graphs.

In a feature model, each feature (except the root) has one parent feature and
can have a set of child features. A child feature can only be included in a feature
combination of a valid product if its parent is included as well. The root feature is
always included. There are four kinds of feature relationships: i) Mandatory fea-
tures are selected whenever their respective parent feature is selected. They are
depicted with a filled circle. For example, features GraphType and Algorithms,

Feature Model Synthesis with Genetic Programming 155

Feature P0 P1 P2 P3 P4

GPL � � � � �
Driver � � � � �

Benchmark � � � � �
GraphType � � � � �
Directed � �

Undirected � � �
Weight � � � �
Search � � � � �
DFS � � �
BFS � �

Algorithms � � � � �
Num � � �
CC � � �
SCC �

Kruskal �
Prim � �
Cycle � �

Shortest �

Table 1. Sample Feature
Sets of GPL

Fig. 1. GPL Feature Model

ii) Optional features may or may not be selected if their respective parent feature
is selected. An example is feature Weight, iii) Exclusive-or relations indicate that
exactly one of the features in the exclusive-or group must be selected whenever
the parent feature is selected. They are depicted as empty arcs crossing over a
set of lines connecting a parent feature with its child features. For instance, a
graph can be either directed or undirected by selecting either feature Directed

or Undirected respectively, iv) Inclusive-or relations indicate that at least one
of the features in the inclusive-or group must be selected if the parent is selected.
They are depicted as filled arcs crossing over a set of lines connecting a parent
feature with its child features. As an example, when feature Algorithms is se-
lected then at least one of the features Num, CC, SCC, Cycle, Shortest, Prim,
and Kruskal must be selected.

Besides the parent-child relations, features can also relate across different
branches of the feature model with the so called Cross-Tree Constraints (CTCs).
Figure 1 shows the CTCs of our feature model in textual form. These constraints
as well as those implied by the hierarchical relations between features are usually
expressed and checked using propositional logic in Conjunctive Normal Form
(CNF) [14]. For instance, the CTC Num requires Search means that whenever
feature Num is selected, feature Search must also be selected. In CNF this CTC
is written as ¬Num ∨ Search.

The following definitions are based on our previous work [12]:

Definition 1. A feature set is a 2-tuple [sel,sel] where sel and sel are re-
spectively the set of selected and not-selected features of a system variant. Let FL
be the list of features of a feature model, such that sel, sel ⊆ FL, sel ∩ sel =
∅, and sel ∪ sel = FL.

Definition 2. A feature set is valid if the selected and not-selected features ad-
here to all the constraints imposed by the feature model.

156 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

For example, the feature set fs=[{GPL, Driver, Benchmark, GraphType,

Directed, Search, DFS, Algorithms, Num}, {Undirected, Weight, BFS,

CC, SCC, Kruskal, Prim, Cycle, Shortest}] is valid. In fact, it corresponds
to feature set P0 in Table 1. As another example, a feature set with features DFS
and BFS is not valid because it violates the constraint of the exclusive-or relation
which establishes that these two features cannot appear selected together in the
same feature set. For GPL case study there are 73 different valid feature sets.

Please recall that the focus of this paper is on synthesizing feature models
from feature sets. In other words, for our running example, starting from a table
such as Table 1 that includes all the valid feature sets, our goal is to derive a
feature model such as the one in Figure 1.

3 Feature Model Synthesis

This section describes the genetic programming pipeline we followed, the fea-
ture model representation we used, and the evolutionary operators that were
developed.

3.1 Genetic Programming Pipeline

The genetic programming pipeline that we employed is shown in Figure 2. It
consists of a set of operators. The gray operators are problem specific while the
white ones are generic. It starts with a Builder that produces an initial pop-
ulation of randomized individuals. The Selection selects individuals from the
current population and either passes them to the Crossover operator or to the
Reproduction operator (depending on the crossover probability). The crossover
produces offspring individuals that ideally maintain valuable traits of their par-
ent individuals according to a fitness criterion. The reproduction operator just
clones individuals. As a next step the individuals either pass through the Mu-
tation operator which performs random mutations on the individuals or again
just through the reproduction (based on the mutation probability). The part of
the pipeline that produces a new population (i.e. the next generation of individ-
uals) from an old one is called Breeding, shown as a box in our figure. Finally
the fitness of the new individuals is evaluated and they are put back into the
population to constitute the next generation. In most cases the new generation
completely replaces the old one possibly with the exception of a select number
of elite individuals (the ones with the best fitness) which survive and live on in
the next generation.

3.2 Feature Model Representation

For the feature model representation we followed a Model Driven Engineering
(MDE) approach whereby a metamodel defines the structure and semantics of
the models that can be derived from it [15]. We choose a simplified version of

Feature Model Synthesis with Genetic Programming 157

Fig. 2. Genetic Programming Pipeline Overview

Fig. 3. Feature Model Metamodel

the SPLX metamodel1, a common standard representation for feature models,
which is shown in Figure 3.

This metamodel describes the structure of a feature model individual, repre-
sented by the FeatureModel meta class. The left part describes the feature tree.
It has exactly one Root feature that, just like any other feature node (i.e. any
node that inherits from Feature), can have an arbitrary number of Mandatory
and Optional child features as well as an arbitrary number of Alternative (i.e.
exclusive-or) and Or (i.e. inclusive-or) group relations which must have at least
one GroupedFeature as a child. The right part of the metamodel describes the
CTCs of a feature model individual. It has exactly one ConstraintSet which
describes a propositional formula in CNF. It contains an arbitrary number of
Constraints which correspond to clauses in a CNF expression. A Constraint

1 http://www.splot-research.org/

http://www.splot-research.org/

158 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

therefore contains exactly one OrClause which must have at least one Literal. A
Literal can either be an Atom which refers to a feature directly or a Not which
then refers to an Atom.

The tree structure for the genetic programming individuals reflects for the
most part this metamodel and is mostly straightforward to derive. The only
exceptions are the following:

– The abstract class Feature is represented by its own type of node even though
it is an abstract class. This Feature node is placed as a child of the inheriting
node (e.g. Mandatory, Optional, etc.). This decision was made to emphasize
the importance of features in the domain of feature models so that changes to
features in the tree are not just reflected in the change of a node’s attributes
(i.e. the name attribute) but also in the structure of the tree (i.e. the change
of a feature node).

– The class GroupedFeature is not represented as a separate node because it
does not hold any information and always appears at the same place in the
tree: between Or or Alternative nodes and their child Feature nodes.

The tree structure for the GPL feature model as shown in Figure 1 is depicted
in Figure 4. The FeatureModel node represents the whole Individual. It consists
of two children: the Root node as the root of its feature tree and the ConstraintSet
node containing its CTCs. For example the first Constraint node represents the
CTC Num requires Search.

3.3 Evaluator Definition

The Evaluator uses a fitness function to describe the fitness of an individual. The
fitness function we employed in the case of feature models is based on information
retrieval metrics (see [16]). We start by defining two auxiliary functions. In the
following definitions, let sfs be a set of feature sets (e.g. as denoted in Table 1)
which represents our input, and let fm be a candidate feature model individual
to be evaluated:

– #containedFeatureSets : SFS × FM → N, returns the number of feature
sets received as first argument sfs that are valid according to a feature model
fm.

– #featureSets : FM → N, returns the number of feature sets denoted by a
feature model fm.

An ideal candidate feature model describes exactly the feature sets contained
in sfs and no more. To express that we use the precision and recall metrics.

Definition 3. Precision. The fraction of the retrieved feature sets that are
relevant to the search.

precision(sfs, fm) =
#containedFeatureSets(sfs, fm)

#featureSets(fm)

Feature Model Synthesis with Genetic Programming 159

F
ig
.
4
.
G
P
L
F
ea
tu
re

M
o
d
el

T
re
e
S
tr
u
ct
u
re

160 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

Definition 4. Recall. The fraction of the feature sets that are relevant to the
search that are successfully retrieved.

recall(sfs, fm) =
#containedFeatureSets(sfs, fm)

|sfs|
Our Evaluator uses the Fβ measure as fitness function which is defined as

follows [16]:

Definition 5. Fβ measure. It is a weighted measure of precision and recall.
The value of β indicates how many times the recall values weigh more in com-
parison with the precision values.

Fβ =
(1 + β2)× precision× recall

β2 × precision+ recall

To compute these metrics the feature model representation is executed in the
sense that every node is implemented as a function that manipulates a set of
feature sets in order to compute the final feature sets that are represented by
the whole feature model. For example a Mandatory node adds to every feature
set in the set its child feature, or a Constraint node removes certain feature sets
from the set.

3.4 Operators Definitions

Not all semantic constraints can be implicitly conveyed by a metamodel. In the
case of our metamodel for feature models there were additional constraints that
also apply:

– A feature is identified by its name.
– There is a fixed set of feature names in each feature model.
– Every feature appears exactly once in the feature tree part of a feature model

individual.
– CTCs must not contradict each other, i.e. the corresponding CNF of the

entire constraint set must be satisfiable.
– CTCs can only be either requires or excludes, i.e. exactly two literals per

clause with at least one being negated.
– There is a maximum number of CTCs (given as a percentage of the number

of features) which must not be exceeded.

Based on the tree structures derived from the metamodel and on these domain
constraints the necessary operators for genetic programming, namely Builder,
Crossover, and Mutator were developed.

Builder. The Builder creates random feature trees and random CTCs that con-
form to the metamodel and also adhere to the additional domain constraints. We
implemented it using the tools FaMa [17] and BeTTy [18], which are frameworks
written in Java for managing and reasoning about feature models.

Feature Model Synthesis with Genetic Programming 161

Mutator. The Mutator makes small random changes to a feature model in-
dividual. One of the following mutations is performed randomly on the feature
tree with equal probability:

– Randomly swaps two features in the feature tree.
– Randomly changes an Alternative relation to an Or relation or vice-versa.
– Randomly changes an Optional or Mandatory relation to any other kind of

relation (Mandatory, Optional, Alternative, Or).
– Randomly selects a subtree in the feature tree and puts it somewhere else in

the tree without violating the metamodel or any of the domain constraints.

The mutations performed on the CTCs, applied with equal probability, are:

– Adds a new, randomly created CTC (i.e. clause) that does not contradict
the other CTCs and does not already exist.

– Randomly removes a CTC (i.e. a clause).

Crossover. The Crossover takes two individuals from the current population,
the parents, and creates two new individuals from them, the offspring. The off-
spring should maintain desirable traits from both their parents. Just like the
other operators the crossover also has to make sure that every offspring still
conforms to the metamodel and does not violate any of the additional domain
constraints. The following describes how our crossover for feature model indi-
viduals works.

1. The offspring is initialized with the root feature of Parent1. If the root
feature of Parent2 is a different one then it is added to the offspring as a
mandatory child feature of its root feature.

2. Traverse the first parent depth first starting at the root node and add to the
offspring a random number r of features that are not already contained by
appending them to their respective parent feature already contained in the
offspring using the same relation type between them (the parent feature of
every visited feature during the traversal is guaranteed to be contained in
the offspring due to the depth first traversal order).

3. Traverse the second parent exactly the same way as the first one.
4. Go to step 2 until every feature is contained in the offspring.

The second offspring is obtained the exact same way only that the parents are
reversed (i.e. the process starts with the second parent Parent2) and the same
sequence of random numbers is used.

The crossover for CTCs is performed by building the union of CTCs of both
parents and then assigning a random subset to the first offspring and the re-
maining to the second offspring.

4 Evaluation

This section first presents the process followed for our evaluation and then ana-
lyzes its results.

162 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

4.1 Process

We implemented the presented approach using ECJ2, a generic framework for
evolutionary computation written in Java. For the evaluation of the approach
we used 17 feature models of actual SPLs that are publicly available3. They are
shown in Table 2.

Table 2. Feature Models Summary

Feature Model Name NF NP Domain

Apache 10 256 web server

argo-uml-spl 11 192 UML tool

BDBFootprint 9 256 database

BDBMemory 19 3,840 database

BDBPerformance 27 1,440 database

Curl 14 1024 data trasfer

DesktopSearcher 22 462 file search

fame dbms fm 20 320 database

gpl 18 73 graph algorithms

LinkedList 27 1,344 data structures

LLVM 12 1,024 compiler library

PKJab 12 72 messenger

Prevayler 6 32 object persistence

SensorNetwork 27 16,704 networking

Wget 17 8,192 file retrieval

x264 17 2,048 video encoding

ZipMe 8 64 data compression
NF: Number of Features, NP: Number of Products,

*BDB: prefix stands for Berkeley DataBase.

We computed for each of these featuremodels the respective sets of valid feature
sets which we used as input to our GP pipeline. The parameter values we employed
are shown in Table 3. Note that as a fitness function in our Evaluator we use the
F1 measure, putting equal weight on recall and precision. As a base line to com-
pare our results to we used a Random Search (RS) that just randomly creates
feature models in hopes of finding a good solution. Details can be found in [19].
The number of random tries is set to the product of the maximum number of
generations and the population size of our genetic programming problem so that
the number of evaluated candidate feature model individuals is the same for
both: maxGenerations× populationSize = 100× 100 = 10000 performed eval-
uations. For the generation of random feature models again the tools FaMa [17]
and BeTTy [18] were used. Additionally we used the Genetic Algorithm (GA)

2 http://cs.gmu.edu/~eclab/projects/ecj/
3 http://www.fosd.de/fh,http://spl2go.cs.ovgu.de/,http://fosd.de/
SPLConqueror

http://cs.gmu.edu/~eclab/projects/ecj/
http://www.fosd.de/fh
http://spl2go.cs.ovgu.de/
http://fosd.de/SPLConqueror
http://fosd.de/SPLConqueror

Feature Model Synthesis with Genetic Programming 163

Table 3. Genetic Programming Parameters

Parameter Value

Fitness Function F1 measure

Crossover Probability 0.7

Feature Tree Mutation Probability 0.5

CTCs Mutation Probability 0.5

Population Size 100

Maximum Number of Generations 100

Number of Elites 1

Selection Method Tournament
Selection

Tournament Size 6

Maximum CTC Percentage* ...

... for Builder 0.1

... for Mutator 0.5

*(relative to number of features)

approach to feature model reverse engineering from our previous work [12] and
extended it to use F1 as its fitness function to allow for a comparison of the
results. Other than the fitness function nothing was changed on that approach.

For every feature model we did 30 independent runs. Table 4 shows for every
feature model the average and the best F1 value as well as the variance for
each our Genetic Programming (GP) approach, the Random Search (RS) and
our previous Genetic Algorithm (GA) approach. All the runs were performed
on a machine with an Intel R© CoreTM i5 processor with 3.1 GHz and 8 GB of
main memory. The total execution time of our genetic programming approach
for all the runs (17 feature models times 30 runs = 510 runs) was at around 13
hours with an average time per run of around 1.5 minutes. For our GPL running
example a run took on average only roughly 6 seconds.

4.2 Statistical Analysis

We performed the statistical analysis using R4, an environment for statistical
computing.

The Wilcoxon Signed-Rank Test [20] determines whether the difference of two
data samples is statistically significant (alternative hypothesis) or due to chance
(null hypothesis). We performed the test on the average F1 values to compare
our genetic programming approach against the random search baseline which
yielded a p-value of 0.00001526 which leads to rejecting the null hypothesis and
accepting the alternative hypothesis that there is a significant difference between
our genetic programming approach and the random search. Applying this same
test to compare our genetic programming approach against the genetic algorithm

4 http://www.r-project.org/

http://www.r-project.org/

164 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

Table 4. F1 Values per Feature Model over 30 runs for Genetic Programming (GP),
Random Search (RS) and Genetic Algorithm (GA)

F1 for GP F1 for RS F1 for GA

FM Name Mean Best Variance Mean Best Variance Mean Best Variance

Apache 1.00 1.00 0.0000 0.73 0.95 0.0112 0.72 1.00 0.0160

argo-uml-spl 1.00 1.00 0.0000 0.62 0.98 0.0096 0.67 1.00 0.0188

BDBFootprint 1.00 1.00 0.0000 0.78 0.98 0.0103 0.70 1.00 0.0103

BDBMemory 0.29 0.40 0.0048 0.05 0.13 0.0004 0.16 0.32 0.0051

BDBPerformance 0.22 0.33 0.0029 0.02 0.04 0.0000 0.16 0.23 0.0020

Curl 0.77 0.89 0.0148 0.25 0.35 0.0015 0.46 0.87 0.0170

DesktopSearcher 0.29 0.34 0.0010 0.05 0.08 0.0002 0.21 0.42 0.0061

fame dbms fm 0.21 0.38 0.0078 0.04 0.08 0.0001 0.13 0.22 0.0019

gpl 0.47 0.57 0.0086 0.09 0.19 0.0009 0.22 0.41 0.0044

LinkedList 0.28 0.34 0.0028 0.02 0.04 0.0001 0.20 0.32 0.0018

LLVM 1.00 1.00 0.0000 0.53 0.70 0.0081 0.70 1.00 0.0080

PKJab 0.97 1.00 0.0048 0.50 0.66 0.0033 0.66 0.80 0.0115

Prevayler 1.00 1.00 0.0000 0.96 1.00 0.0011 0.69 1.00 0.0072

SensorNetwork 0.26 0.33 0.0016 0.02 0.05 0.0001 0.14 0.21 0.0009

Wget 0.72 0.89 0.0164 0.16 0.23 0.0008 0.40 0.61 0.0041

x264 0.47 0.68 0.0093 0.11 0.20 0.0008 0.23 0.45 0.0054

ZipMe 1.00 1.00 0.0000 0.88 1.00 0.0057 0.72 1.00 0.0160

approach resulted in a p-value of 0.0003204 also indicating a significant difference
between the two approaches.

The Â12 Effect Size Measure [20, 21] represents the probability that using
one algorithm (our genetic programming approach) yields better results than
using another algorithm (random search and genetic algorithm approach). An
Â12 measure of 0.5 would mean both algorithms perform equally well. The value
we obtained based on the average F1 values of our genetic programming ap-
proach and the random search is Â12 = 0.7750865 which means that the genetic
programming approach clearly outperforms the random search, as the probabil-
ity of achieving better results with it is at 77.5%. Computing this measure for
our genetic programming approach and the genetic algorithm approach yielded
Â12 = 0.7474048 which again means that our genetic programming approach
outperforms the genetic algorithm approach.

4.3 Threats to Validity

Following the guidelines in [22] we identified three threats to validity that are
relevant to our work. The first is the parameter settings that were used during
the evaluation, all of which are given in Table 3. Mostly standard values for
genetic programming were used except for the mutation probability where we
followed the example of [23] and used an above standard value. The second
threat is the correctness of the implementation. To address this threat we provide
an overview of our genetic programming pipeline (Figure 2), we used ECJ as

Feature Model Synthesis with Genetic Programming 165

a proven framework for evolutionary computation to implement our approach
with, and we make the full implementation and data available for replication5.
The third threat is the selection of the corpus of feature models on which the
evaluation was performed. These feature models stem from actual SPLs and we
thus believe that they are good representatives of the feature models domain.

5 Related Work

In this section, we briefly summarize the pieces of work that are closest to ours.
Our previous work studied reverse engineering feature models using a genetic

algorithm [12]. We encoded feature models based on a depth-first traversal order.
The key limitations of that approach were the relative ordering that features
should have between them and the heavy performance penalty of detecting and
fixing incorrect individuals after mutation and crossover.

The work by Haslinger et al. presents an ad hoc algorithm also to reverse
engineer feature models [24]. The main distinction with our work is that it only
reverse engineers one feature model, as opposed to potentially many equivalent
feature models in our work. The work by She et al. also provides ad hoc al-
gorithms for reverse engineering feature models, however, in contrast with our
work, they start from a set of constraints expressed either in CNF or DNF. Work
by Acher et al. relies on user-defined domain knowledge to help structure the
hierarchy between features [25]. This knowledge helps to eliminate semantically
correct (i.e. correct feature combinations) feature models that are hierarchically
incorrect (i.e. parent-child relation swapped). These two pieces of work could be
respectively leveraged to seed the initial population and guide the search in our
approach. These are two issues we plan to explore as part of our future work.

Recent work by Acher et al. presents several feature model composition oper-
ators [26]. They provide their semantics and analyze their properties. We believe
their work could help our approach to both define other crossover operators as
well as put them in a more formal footing. Doing this is part of our future work.

6 Conclusions and Future Work

In this paper we applied genetic programming to the problem of reverse engineer-
ing feature models in the context of SPLs. We showed the workflow that we fol-
lowed along with the resulting representation of feature models and the evolution-
ary operators used in our genetic programming pipeline. We reported our encour-
aging experience synthesizing 17 feature models and compared our results to a
random search baseline as well as to previous work in the area of feature model
reverse engineering and showed that our approach outperforms both.

As future work we plan to investigate the impact of seeding knowledge derived
from ad-hoc reverse engineering algorithms into our GP pipeline, as well as other
operators for crossover based on feature model composition. Currently the fitness

5 http://www.sea.uni-linz.ac.at/sbse4vm/data/ssbse.zip

http://www.sea.uni-linz.ac.at/sbse4vm/data/ssbse.zip

166 L. Linsbauer, R.E. Lopez-Herrejon, and A. Egyed

of individuals is based on whether feature sets are contained or not. This is rather
coarse grain. We want to employ a more fine-grain fitness metric that works on
the level of single features instead of complete feature sets. Also we plan to
evaluate our approach using more feature models.

Acknowledgments. This research is partially funded by the Austrian Science
Fund (FWF) project P25289-N15 and Lise Meitner Fellowship M1421-N15.

References

1. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012)

2. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engineer-
ing: Techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empirical Soft-
ware Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg
(2012)

3. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: A
bibliometric analysis. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
vol. 6956, pp. 18–32. Springer, Heidelberg (2011)

4. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu (2008)

5. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

6. Lopez-Herrejon, R.E., Egyed, A.: Sbse4vm: Search based software engineering
for variability management. In: Cleve, A., Ricca, F., Cerioli, M. (eds.) CSMR,
pp. 441–444. IEEE Computer Society (2013)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University (1990)

8. Laguna, M.A., Crespo, Y.: A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Sci. Com-
put. Program. 78(8), 1010–1034 (2013)

9. Krueger, C.W.: Easing the transition to software mass customization. In: van der
Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg
(2002)

10. She, S., Ryssel, U., Andersen, N., Wsowski, A., Czarnecki, K.: Efficient synthesis
of feature models. Information and Software Technology (in press, 2014)

11. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse en-
gineering. In: Lämmel, R., Oliveto, R., Robbes, R. (eds.) WCRE, pp. 1–10. IEEE
(2013)

12. Lopez-Herrejon, R.E., Galindo, J.A., Benavides, D., Segura, S., Egyed, A.: Reverse
engineering feature models with evolutionary algorithms: An exploratory study. In:
Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 168–182.
Springer, Heidelberg (2012)

13. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-
line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001)

Feature Model Synthesis with Genetic Programming 167

14. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20
years later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

15. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development - technology, engineering, management. Pitman (2006)

16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

17. Benavides, D., Segura, S., Trinidad, P., Cortés, A.R.: Fama: Tooling a frame-
work for the automated analysis of feature models. In: Pohl, K., Heymans, P.,
Kang, K.C., Metzger, A., eds.: VaMoS. Volume 2007-01 of Lero Technical Report,
129–134 (2007)

18. Segura, S., Galindo, J., Benavides, D., Parejo, J.A., Cortés, A.R.: BeTTy: Bench-
marking and testing on the automated analysis of feature models. In: Eisenecker,
U.W., Apel, S., Gnesi, S. (eds.) VaMoS, pp. 63–71. ACM (2012)

19. Luke, S.: Essentials of Metaheuristics. Lulu (2009) Available for free at http://

cs.gmu.edu/~sean/book/metaheuristics/

20. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Software Testing, Verification & Reliability
(2012)

21. Vargha, A., Delaney, H.D.: A critique and improvement of the “cl” common lan-
guage effect size statistics of mcgraw and wong. Journal of Educational and Be-
havioral Statistics 25(2), 101–132 (2000)

22. de Oliveira Barros, M., Neto, A.C.D.: Threats to Validity in Search-based Software
Engineering Empirical Studies. Technical Report 0006/2011, Universidade Federal
Do Estado Do Rio de Janeiro. Departamento de Informatica Aplicada (2011)

23. Faunes, M., Cadavid, J.J., Baudry, B., Sahraoui, H.A., Combemale, B.: Auto-
matically searching for metamodel well-formedness rules in examples and counter-
examples. In: [27], pp. 187–202

24. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extracting feature models
from sets of valid feature combinations. In: Cortellessa, V., Varró, D. (eds.) FASE
2013 (ETAPS 2013). LNCS, vol. 7793, pp. 53–67. Springer, Heidelberg (2013)

25. Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.L.: Support for reverse
engineering and maintaining feature models. In: Gnesi, S., Collet, P., Schmid, K.
(eds.) VaMoS, pp. 20:1–20:8. ACM (2013)

26. Acher, M., Combemale, B., Collet, P., Barais, O., Lahire, P., France, R.B.: Com-
posing your compositions of variability models. In: [27], pp. 352–369

27. Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.): MODELS 2013.
LNCS, vol. 8107. Springer, Heidelberg (2013)

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/

	Feature Model Synthesis
with Genetic Programming

	1 Introduction
	2 Feature Models and Running Example
	3 Feature Model Synthesis
	3.1 Genetic Programming Pipeline
	3.2 Feature Model Representation
	3.3 Evaluator Definition
	3.4 Operators Definitions

	4 Evaluation
	4.1 Process
	4.2 Statistical Analysis
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

